

Why so many have been wrong on critical metals

LME Week Asia

June 2024

 $\label{eq:constraint} \begin{array}{l} {\sf CONFIDENTIAL \ AND \ PROPRIETARY \ | \ @ \ 2024 \ McKinsey \ \& \ Company.} \\ {\sf This \ material \ is \ intended \ solely \ for \ your \ internal \ use \ and \ any \ use \ of \ this \ material \ without \ specific \ permission \ of \ McKinsey \ \& \ Company \ is \ strictly \ prohibited. \ All \ rights \ reserved. \end{array}$

Vehicles are getting close to 1,000 km range and sub 5 min recharge times, ending the need for ICE

140kWh Qilin pack from Zeekr 009, cells connections are top welded

Cooling plate configuration Source: A2Mac1, MCFM EV Insights

Battery housing is absent of crossmembers, venting channels pictured

Detail of venting channels with "blow out panels" that allow gasses to escape while providing protection to neighboring cells from hot gasses

KPI assessment

	Announced	Zeekr 009
Range, km	1000+	855
Pack energy density, Wh/kg	250+	200
Cell energy density, Wh/kg	255	285
VCTPR, %	72	86
Charging speed, 10- 80% @ 23C, minutes	>10	TBC
Cycles to 80%, cycles	ТВС	ТВС

Design highlights

Despite missing initial claims, 200Wh/kg energy density is best in class at pack level, due to absence of cross members and cell-to-pack concept

Side cooling with slightly less efficient thermal path is used to minimize additional thermal runaway features

Downward venting thermal management system featuring "blow out panels"

Why did so many get the high volatility of metal markets wrong?

1) The markets are relatively thinly traded (cobalt, nickel, even to some extent nickel)

2) Analyst like linear models and they trend t o track either supply OR demand (do not adjust changed in demand matrix quickly enough)

- Copper demand per unit of vehicle vs infrastructure
- Battery chemistry changes

3) Demand has been unprecedented

4) Supply reactions have been incredibly rapid

Expect high volatility to continue, but know that there is no "bottleneck" metal as innovations can alter chemistries

Our view of the battery market in 2017 was quite different from today

Printec

SOURCE: Battery raw materials demand model

Our view of the market in 2019...showed global battery demand to reach ~2,600 GWh in 2030, we now see nearly triple this

Battery demand is projected to reach 8.1 TWh by 2035, mostly concentrated in China

2023 Q3 **Current trajectory Scenario**

Global battery cell demand by sector, 2020-2035, GWh

Incl. Passenger cars, Commercial vehicles, 2-3 wheelers, off highway vehicles, maritime, drones and aviation 1.

Source: McKinsey Battery Insights Demand Model

ケーケーケーケーケー Li-ion Na-ion Li-S Pb-a V-RF Ni-MH

Global battery cell demand by region, 2020-2035. GWh

Key insights

~ 90% of demand driven by the mobility sector

from the China market

Significant growth globally due to regulation

20 X

growth in GWh battery demand from 2018 to 2035

BEV adoption continues to accelerate – could reach over 60% of global passenger vehicle sales within the next 8 years

Further Acceleration

Passenger cars production by powertrain¹, million units

1. BEV – Battery Electric Vehicle; HEV – Hybrid Electric Vehicle; PHEV – Plug-in Hybrid Electric Vehicle, MHEV – Mild Hybrid Electric Vehicle; ICE – Internal Combustion Engine Vehicle

2. Include FCEV - Fuel Cell Electric Vehicle

Source: McKinsey Center of Future Mobility

BEV adoption driven by:

Regulation and incentives

 Regional/national regulations and local laws (e.g., UK moving ICE ban forward to 2030) are the key driver of electric vehicle adoption globally and often combined with incentives

Technology & charging infrastructure

- Further reduction in battery costs and technology cost will reduce price difference between EVs and ICE vehicles
- Public fast-charging infrastructure is growing in early EV markets.
 First generation of EV buyers has access to private charging (often subsidized)

Consumer preferences

- Consumer mind is shifting towards sustainable mobility and purchase consideration of EVs is growing

Demand for pure EV's has continued to grow at a rapid pace, chemistries have changed

Global Quarterly BEV Sales

Lithium prices have gone through periods of sharp spikes and drops over the past five years, driven by imbalances in the market

2024 Q1

Lithium Carbonate price in China, US\$/tonne

85,000 г					
00,000		Λ.			
80,000	Spot prices exceeding 80 kUS\$/	t in 👗 🚺			
75 000	November 2022, following addition	onal	Price drops rapidly as market		
. 0,000	delays due to limited access to		hocomos ovorsupplied from		
70,000	equipment, reagents, and workfo	orce	expansions in South America		
ŕ	in Latin America and Australia		expansions in South America		
65,000			and new supply from Australia		
			ramping-up China ending its EV		
60,000	Demand uptick from EVs		subsidy program EV		
55 000	coupled with bottlenecks in the	4	sales in January fell		
55,000	supply chain caused a price ru	n	6 3% year on year		
50 000	Subsequent price stabilization		0.376 year on year		
00,000	at high prices as market adapts				
45,000	-				
ŕ					
40,000					
05 000	Supply curtailments, project	1		An influx of new supply entering	
35,000	delays coupled with higher-			the market, coupled with a	
20,000	than-expected EV demand			reduced downstream demand	
30,000	cause the market to tighten	Restocking by Chinese		leads to a decline in prices	
25 000	and prices increase	OEMs and refiners	CATL offered Chinese		
20,000	• ~	-	OEMs a fixed price of ~29		
20,000			kUS\$/t provided they	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			purchased at least 80% of		
15,000	لہ \		their batteries from CATL		
10.000			over the next three years		
10,000			-		
5 000					
3,000	Market historically balanced as it is concentrated	in			
0 L	L few large players, with demand growth coming fro	om			
2	mature applications kept prices in check				

Cell Technology is very diverse--The type of potential solutions to the world's battery needs is vast and changing every day

We see battery chemistry evolving rapidly and not in a straight line, OEM's focus on density, charging speed, costs, and durability

Understand cathode AND anode material qualities and implications

Anode Separator/Electrolyte Cathode

1. Very early stage reflexion

2. Based on 7-year contracts in average, last known supply order signed with Volkswagen in March 2021

Our 2023 chemistry view has changed vastly, and expect this change to continue, causing issues for those estimating demand

Further Acceleration Scenario

1. Lithium Ions batteries only. LCO: Lithium Cobalt Oxide; NMC: Lithium Nickel Manganese Cobalt Oxide; NCA: Lithium Nickel Cobalt Aluminum Oxide; LFP: Lithium Iron Phosphate; LMFP: Lithium Manganese Iron Phosphate; LMO: Lithium Manganese Oxide;

2. Lithium Ions batteries only. LTO: Lithium Titanate Oxide;

Current base pipeline of lithium projects expected to cover demand until 2026, but early-stage projects needed to cover demand to 2035

Investments in new deposits development will be required over the next decade

2024 Q1

Lithium supply-demand^{1,2} balance Mt LCE

Secondary supply
High case addition
Operation
Full project pipeline
Base case projects
Demand - Further Acceleration
Demand - Achieved Commitments
Demand - Current Trajectory

Developing new projects is needed in the longer-term to cover an accelerating demand growth

High case and full potential addition will rely on new technologies (e.g. DLE) and ramp-up capacity of me countries (e.g. Argentina)

Base case additions come from brownfield expansions and advanced greenfield projects and might be able to cover short-term demand

Recycling is not expected to play a major role before the end of the decade

1. Mined production volume. Forecast potential production accounts for historic utilization rates as a result of external disruptions and economic curtailments (7%) – modelled at 93% of the available capacity

2. Production includes volumes which may not have been refined. These include stockpiling of DSO and Spodumene concentrate

Source: MineSpans

Marginal lithium mining projects require a price of at least 17,000 USD/t LCE over their mine life

2024 Q1 Full potential

Lithium value chain follows two routes, each having a preferential end-battery product Each could be a tradable market

Simplified lithium process flows with main deposits, processes and end-products

% Share, 2023

Value in comparison with Li2CO3

1. Disregarding presence of other deposit types (e.g., lepidolite, clay) and other end-products for simplification purposes given limited share in me. 40x

Fast-growing EV

NMC/NM/LMNO etc expected to drive class

The bulk of supply growth is expected

Indonesia . will this

The nickel pig iron

Indonesia, in excess of

the flat stainless steel demand is expected to

be available for class 1

production (matte)

from laterites in

supply last?

(NPI) supply,

particularly in

intermediate

batteries using

1 demand

Class 1 tightness is likely to endure, potentially relieved by NPI conversion increasing supply or nickel substitution reducing demand

Refined nickel supply capacity and demand by class of nickel, in kt Ni

1. Class demand based on the current demand profile. Shifts in demand are likely to happen with evolving technology and price dynamics

Source: MineSpans

How to do your best are understanding metal markets in this unprecedented age of energy transition

1) Know that battery technology and battery chemistry will evolve depending upon

- A) Cost
- B) Performance

2) Track all demand trends, not just EV's but stationary, infrastructure etc. to understand true demand delta

3) Never underestimate the mining industry for bringing new capacity to market

4) Buy when prices are low and sell when prices are high