
 THE LONDON METAL EXCHANGE

10 Finsbury Square, London EC2A 1AJ | Tel +44 (0)20 7113 8888

Registered in England no 2128666. Registered office as above.

LME.COM

LMEsource v4
Developer Guide

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 2

1 DOCUMENT CONTROL .. 4

1.1 CHANGE HISTORY ... 4

1.2 ASSOCIATED DOCUMENTS.. 4

2 INTRODUCTION .. 5

2.1 ACRONYMS USED IN THIS DOCUMENT ... 5

2.2 BASIC CLIENT APPLICATION LAYOUT... 6

3 DATA STRUCTURE ... 7

3.1 PACKET HEADER .. 7

3.2 HEARTBEATS ... 8

3.3 MESSAGE HEADER ... 8

3.4 MESSAGE FORMATS ... 9

4 ENDIAN ... 10

5 FIELD ATTRIBUTES .. 11

5.1 NULL VALUES .. 11

5.2 CURRENCY VALUES ... 11

5.3 FRAGMENTED MESSAGES .. 12

6 MESSAGE PROCESSING ... 13

6.1 START OF DAY ... 13

6.2 NORMAL TRANSACTION... 13

6.2.1 Receive Multicast .. 14

6.2.2 Line Arbitration.. 14

6.2.3 Process Control Message (Heartbeats) ... 17

6.2.4 Process Disaster Recovery Signal Message (105) .. 18

6.3 RECOVERY .. 18

6.3.1 Retransmission Service .. 18

6.3.2 Refresh Service .. 24

7 RACE CONDITIONS .. 30

8 EXCEPTION HANDLING AND SPECIAL TRADING CONDITION ... 31

8.1 LATE CONNECTION / START-UP REFRESH .. 31

8.2 INTRA-DAY REFRESH ... 31

8.2.1 Sequencing of events ... 32

8.3 CLIENT APPLICATION RESTARTS ... 32

8.4 SEQUENCE RESET MESSAGE ... 32

8.4.1 Sequence Reset Message from real time channels ... 32

8.5 LMESOURCE RESTARTS BEFORE MARKET OPEN ... 33

8.6 LMESOURCE RESTARTS AFTER MARKET OPEN (INTRADAY RESTART) .. 33

8.7 LMESOURCE COMPONENT FAILOVER ... 33

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 3

8.8 SITE FAILOVER ... 34

8.9 SPECIAL TRADING CONDITION ... 35

9 APPENDIX A – PSEUDO CODE OF LINE ARBITRATION .. 36

10 APPENDIX B – PSEUDO CODE FOR PROCESSING RETRANSMISSION DATA ... 38

11 APPENDIX C – PSEUDO CODE FOR PROCESSING A REFRESH SNAPSHOT PACKET 40

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 4

1 Document Control

1.1 Change History

Version Change Date Summary of Change

1.0 28 Jan 22 Released

1.1 23 Nov 22 Added 5.3 Fragmented Messages

Added 8.7 LMEsource Component Failover for Non-Electronic

channels

1.2 Associated Documents

Title

LMEsource Client Interface Specification

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 5

2 Introduction

This document contains guidelines and suggestions for LMEsource Market Data Platform feed handler

developers. All the information included in this document is for reference only. Clients should design

and implement their own LMEsource feed handler that is tailored to their specific business and

technical requirements.

The scope of this document covers line arbitrage, packet and message processing, retransmission and

refresh mechanisms, order book maintenance and exception handling.

The purpose of this document is to answer questions that developers may have after reading the

LMEsource Client Interface Specification. It shows examples of usage and code snippets to help

developers understand the logic behind the market data disseminated from LMEsource.

2.1 Acronyms used in this document

Acronym Meaning

FH Feed handler

HA High Availability

MC Multicast

RFS Refresh Server

RTS Retransmission Server

UDP User Datagram Protocol

XDP Exchange Data Publisher

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 6

2.2 Basic Client Application Layout

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 7

3 Data Structure

Multicast messages are structured into a common packet header followed by zero or more messages.

Messages within a packet are laid out sequentially, one after another without any spaces between

them.

A packet only contains complete messages. In other words, a single message will never be fragmented

across packets.

3.1 Packet Header

All packets disseminated from the LMEsource feed have a common packet header. The format of the

packet header is consistent across live, retransmission and refresh services. An XDP packet consists

of a 16-byte header followed by zero or more messages.

There are no delimiters between the packet header and messages or between messages themselves.

One has to use the size of the header and in each individual message to determine the start of each

message.

The table below shows the packet header structure. The offsets in the table represent the number of

bytes from the beginning of the packet.

Field Offset Length Format Description

PktSize 0 2 Uint16 Binary integer representing size of the packet

(including this header)

MsgCount 2 1 UInt8 Binary integer representing number of messages

included in the packet

Filler 3 1 String

SeqNum 4 4 Uint32 Binary integer representing the sequence number of

the first message in the packet

SendTime 8 8 UInt64 Binary integer representing the number of

nanoseconds since January 1, 1970, 00:00:00 GMT,

precision is provided to the nearest microsecond.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 8

Field Offset Length Format Description

During BST, the date value in this field will have the

previous day’s date between the times of 00:00:00

BST and 00:59:59:999 BST.

3.2 Heartbeats

Heartbeats consist of a packet header with MsgCount set to 0 and do not increment the sequence

number of the multicast channel. SeqNum in the packet header of Heartbeats is set to the sequence

number of the previous message sent on the channel.

The Heartbeat message syntax is identical across LMEsource services.

3.3 Message Header

The format of each message within a packet varies according to message type. However, regardless

of the message type, all messages start with a two-byte message size followed by a two-byte message

type.

 MsgSize Binary integer representing the length of the message (including the header)

 MsgType Binary integer representing the type of message. Please refer to the

LMEsource Interface Specification for the full list of message type and the layout of each

message type

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 9

3.4 Message Formats

Please refer to the LMEsource Client Interface Specification for details on the following message types:

- Control messages

- Retransmission

- Refresh

- Instrument Reference Data

- Security Status Data

- Order Book Data

- Trade and Price Data

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 10

4 Endian

All binary values are in Little Endian byte order, which means the first byte (lowest address) is the least

significant one.

In C/C++, one solution is to create a structure containing all the fields from the packet header and cast

the pointer to a packet, to a pointer to such a structure. For instance:

struct XdpPacketHeader

{

unsigned short mPktSize;

unsigned char mMsgCount;

unsigned char mFiller;

unsigned long mSeqNum;

unsigned long long mSendTime;

};

Assume the packet is passed as a pointer to const unsigned char, which could look like this:

struct PacketHeader* hdr = static_cast<PacketHeader*> (packetPtr);

One packet can contain multiple messages. Clients should locate the beginning of each message

based on the message length and process each message separately. The number of messages within

a packet is indicated by the MsgCount field in the packet header.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 11

5 Field Attributes

5.1 Null Values

From time to time certain fields cannot be populated and specific values are used to represent null.

The following table shows the values used to represent null for different data types:

Format Null representation (Hex 2’s complement)

Int8 0x80

Int32 0x8000 0000

Int64 0x8000 0000 0000 0000

Uint8 0xFF

Uint16 0xFFFF

Uint32 0xFFFF FFFF

Uint64 0xFFFF FFFF FFFF FFFF

5.2 Currency Values

Please see ISO 4217 for a full list of possible currency codes. Currently, the system uses the following

codes:

‘USD’ – US dollars

‘GBP’ – GB Pounds

‘EUR’ – Euro

‘JPY’ – Japanese Yen

LME may add or delete currency code(s), whenever applicable, in the future.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 12

5.3 Fragmented Messages

Data that cannot be sent in a single message will be fragmented into multiple messages, for example,

Reference Prices Carries (402) and Reference Volatility Prices (404).

These message types include a RemainingPrice and RemainingVolatilities field which carries the

number of record available to be published. The value remaining decreases along with messages

published. When the value remaining equals the number of record in the message it indicates that the

message is the last in the series.

Example 1: Number of available records 50, message capacity 100.

The following message will be published:

Message

Serial

Number

Remaining

Records

Number of

Records

Remark

1 50 50 One message is sufficient to carry all

records

Example 2: Number of available records 350, message capacity 100.

The following messages will be published.

Message

Serial

Number

Remaining

Records

Number of

Records

Remark

1 350 100 Not the last message

2 250 100 Not the last message

3 150 100 Not the last message

4 50 50 The value in the two fields is equal which

indicates this is the last message of the 4

messages serial.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 13

6 Message Processing

Each multicast channel maintains its own session. A session is limited to one business day. During the

day, the message sequence number is strictly increasing and therefore unique within a channel.

Messages from the LME base metals market and LMEprecious market must be processed independent

of each other.

6.1 Start of Day

The maintenance window of LMEsource starts immediately after the system shuts down for the day

until 00:30 the next business day. During the maintenance window, there could be system

maintenance and housekeeping operations where LMEsource may be started up and shut down

intermittently with the natural consequence of messages (e.g. Sequence Reset) sent via some

multicast channels. In this regard, clients are advised to make connection to LMEsource at or after

00:30 every business day to ensure that the data received from LMEsource are good for the start of

the day.

During the startup of LMEsource server (00:30), Sequence Reset (100) messages and a large volume

of market initiation messages may be sent at high speed and a client may fail to receive the Sequence

Reset (100) message because of the timing of its connection to the LMEsource server. Clients should

therefore build in the flexibility in their feed handlers to handle such situations. For details of processing

Sequence Reset (100) messages, please refer to section 8.4

Clients may receive multiple Sequence Reset messages during the start of day as a result of

LMEsource restarting. The general handling should be to reset the next expected sequence number

and clear all cached data for all instruments. Please refer to section 8.5

After receiving the Sequence Reset message, clients should also check the sequence number of the

next incoming packet. If the sequence number is not equal to 1, it indicates that there is packet loss.

Please refer to section 8.4 for details.

Clients start after LMEsource start-up time and miss sequence reset message and reference

data

Please refer to section 6.3.2.2 for the handling of a late connection.

6.2 Normal Transaction

Normal message transmission is expected between when the market opens for trading and when the

market closes. Heartbeats are sent regularly on each channel when there is no line activity. Currently

LMEsource sends heartbeats every 2 seconds.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 14

The UDP multicast network/transport protocol is used in LMEsource and the data is sent to different

broadcast streams (known as multicast channels).

UDP is not a reliable transport protocol and therefore packets may be lost or arrive out of sequence.

To minimize the risk of losing a packet, the data on each channel is published on two redundant lines,

A and B.

Clients receive and process LMEsource data:

 Receive real-time multicast messages from Line A and Line B

o Create two sockets using Multicast IP / Ports of Line A and Line B

o Read data from multicast channel for Line A and Line B

 Line Arbitration using sequence number in packet header

o Discard duplicate packets

o Reorder packets

o Detect message gap

 Processing of multicast messages

o Process Data Message

o Process Control Message (Heartbeat)

6.2.1 Receive Multicast

Data is categorized and available from dedicated multicast groups. Clients join a particular multicast

group in order to receive the desired data.

Clients can connect to and receive real-time multicast messages from Line A and Line B.

6.2.2 Line Arbitration

The network/transport protocol used in LMEsource is UDP multicast. The data in LMEsource is divided

into broadcast streams (known as channels). The data on each channel comes from two redundant

lines, A and B. UDP is not a reliable transport protocol like TCP but because of this it is much faster,

although this means it is possible that packets may be lost or arrive out of sequence. Two lines with

identical data minimises the risk of losing a packet; however the risk still exists.

Note

1. Clients should not prioritise line A over line B. They should listen to both line A and B at the

same time. Line A is not guaranteed to be faster than B. They should both be treated with the

same priority. The approach that assumes listening to line B only if there is a gap detected on

line A is incorrect. In general, it is recommended to have an abstraction layer between the gap

detection module and the source of packets. In other words, the gap detection module does

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 15

not have to know where the packets are coming from, it just needs to monitor packet sequence

numbers.

2. The packaging of messages between Line A and Line B may be different. In the example

below, three packets are sent on each line, but message ‘OrderUpdate3’ appears in one packet

from Line A but in the subsequent packet on Line B.

Note

MC: Message Count in a Packet

SN: Sequence Number

Clients receiving LMEsource feed are recommended to implement the following functionality in order

to provide appropriate line handling:

1. Discarding duplicate messages

2. Reordering messages

3. Gap Detection

All of the above can be achieved by remembering the next expected sequence number. Please refer

to the Gap Detection Diagram in the LMEsource Client Interface Specification.

Basically, a gap detection mechanism may work like this:

When clients receive a packet from Line A or Line B,

 Handle the first packet, process each message within the packet and advance the next

expected sequence number by the message count in the packet header

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 16

 When a subsequent packet is received, compare the current seqNum in the packet header

with the nextSeqNum

o If seqNum > nextSeqNum, it is a gap and spool the message

o If (seqNum + msgCount in packet) < nextSeqNum, it is a duplicate packet and skip

 When processing each message within the packet

o If (seqNum + message processed count in this packet) < nextSeqNum,

 It is a duplicate message and skip

o If (seqNum + message processed count in this packet) = nextSeqNum,

 Process it and advance the next expected sequence number (nextSeqNum)

by 1

Please refer to APPENDIX B – Pseudo code for processing retransmission data for an example on

detecting a message gap or duplicate packet.

6.2.2.1 Possible approaches for handling a message gap

Approach 1: Clients wait some time to fill the gap from the redundant line (or the packet may

come from the same line, possibly out of order).

If a given amount of time has passed and there still is a gap, the clients should send a retransmission

request. While waiting for retransmission all packets coming from the live feed should be spooled. After

processing the retransmitted packets, clients should process the spooled packets/messages.

Note

1. While waiting for the retransmission, another gap can occur. Clients should take this into

account. One possible solution would be to keep track of how many gaps have been detected

and for which gaps a retransmission request has already been sent.

2. Only a continuous series of packets/messages from the spool should be processed.

3. Any gaps should wait to be filled either from the redundant line or the retransmission server.

4. Check if the gap in spooled messages can be filled at a regular interval.

5. If the gap cannot be recovered within a specified time, clients should recover from refresh

server.

Please refer to APPENDIX B – Pseudo code for processing retransmission data for example on

processing spooled messages.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 17

Approach 2: Issue a retransmission request immediately after detecting a gap

If the missed packets/messages come on the redundant line before they come from the retransmission,

clients will simply process them and discard the retransmitted ones.

6.2.3 Process Control Message (Heartbeats)

Heartbeats are disseminated at regular time intervals. Clients can use heartbeats to check if the feed

is alive. If there is no heartbeat for longer than a configurable time (please refer to LMEsource Client

Interface Specification for the multicast heartbeat interval currently set in LMEsource), then it indicates

an outage of data transmission.

Note that LMEsource sends heartbeats only when there is no market data being disseminated. When

there is market data on the line, no heartbeats will be sent.

Heartbeats consist of a packet header with MsgCount set to 0 and do not increment the sequence

number of the multicast channel. SeqNum in packet header is set to the sequence number of the

previous message sent in the channel.

When receiving a heartbeat packet, clients should ignore this packet in their gap detection. Otherwise,

clients may fail to detect an actual message gap.

Time Packet

sent from

LMEsource

Packet

received by

Client

Remark

T1 101 101

T2 102 102

T3 103 Packet with SeqNum 103 is lost

T4 103

(Heartbeat)

103

(Heartbeat)

If client receives heartbeat message but

cannot find the corresponding packet

with same sequence number, it indicates

a message gap and the client should

recover the lost message

T5 104 104

T6 105 105

T7 106 106

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 18

6.2.4 Process Disaster Recovery Signal Message (105)

The Disaster Recovery (DR) Signal message indicates to clients whether LMEsource is operating in

the primary site or the backup site. See Section 8.8 on how to handle LMEsource site failover making

use of the DR Signal message.

6.3 Recovery

Since UDP multicast is not a reliable protocol there is a risk of packet loss. Clients can recover lost

messages using the retransmission server or the refresh service with consideration on various factors

such as message gap size, recovery time/event etc.

6.3.1 Retransmission Service

For small message gaps, clients can recover lost messages using the retransmission service (RTS)

which clients connect to using the more reliable TCP/IP protocol. In order to receive lost messages,

clients need to send a Retransmission Request. The RTS will respond with a Retransmission

Response which can indicate that either the request has been accepted or rejected (the RetransStatus

field). If accepted, the RetransStatus field will be 0, and if rejected, the values can be 1, 2, 100 or 101,

see section 6.3.1.6.

The retransmission service contains only a relatively small number of messages from each broadcast

channel and covers the market activities for the last 15 to 30 seconds under normal market conditions.

The RTS should not be thought of as a means of full data recovery. It serves only as real time

retransmission of a relatively small number of lost messages.

Clients can have only one connection with the RTS.

Refer to the LMEsource Client Interface Specification for details of system limits.

Note

If clients need to issue a retransmission request for a gap bigger than the allowed limit, they need to

split the requests into an appropriate amount of smaller requests.

RTS Logon, RTS Logon Response, RTS Request and RTS Response messages will begin with a

packet header which is in the same format as the real time messages. Clients should ignore the

sequence number in the RTS packet header when sending or processing the RTS messages.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 19

6.3.1.1 Secondary Retransmission Service

There is a secondary RTS which would be used in the event of problems being encountered with the

primary RTS. This is a part of the High Availability design and is meant to provide customers with a

seamless service in case of failure of the primary RTS. As part of the High Availability design, users

will connect into a load balancer behind which multiple RTS servers will be running in an Active state. If

there is a problem with one of the RTS servers users will be redirected to another server. Please see

the LME systems connectivity guide for network connectivity details.

6.3.1.2 RTS Logon

In order to receive retransmission, clients must establish a TCP/IP connection with the RTS and initiate

a session by sending a Logon message within the logon timeout interval (5 seconds). If clients do not

send a Logon message within the logon timeout interval, the RTS will close the connection.

Logon Packet Header

PktSize 32

MsgCount 1

Filler

SeqNum Not used

SendTime The number of nanoseconds since January 1, 1970, 00:00:00 GMT, precision

is provided to the nearest millisecond.

Logon Request Message

MsgSize 16

MsgType 101

Username Username to logon in plain text

(Note: Please pad with NULLs after the username to fill up the 12 characters

field)

6.3.1.3 RTS Logon Response

The RTS immediately sends a LogonResponse message after it receives a Logon request. The

SessionStatus field indicates if the Logon was successful. The possible values of this field are:

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 20

Logon Session Status

0 Session Active

5 Invalid username

100 User already connected

The session, once established, can be reused for sending any subsequent retransmission requests.

To maintain the session, a client must respond to heartbeats sent by the RTS within 5 seconds.

6.3.1.4 RTS Heartbeats

To determine the health of the client connection on the TCP/IP channel, the RTS will regularly send

heartbeats to the client. The client must respond with a Heartbeat Response. The timeout of this

heartbeat response is set at 5 seconds. If no response is received by the RTS within this timeframe,

the RTS will disconnect the session.

A Heartbeat Response is an exact copy of the incoming Heartbeat.

6.3.1.5 RTS Request

A Retransmission Request consists of a Packet Header and a Retransmission Request (201):

Retransmission Request Packet Header

PktSize 32

MsgCount 1

Filler

SeqNum Not used

SendTime The number of nanoseconds since January 1, 1970, 00:00:00 GMT, precision

is provided to the nearest millisecond.

Retransmission Request Message

MsgSize 16

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 21

Retransmission Request Message

MsgType 201

ChannelID Dependent upon the broadcast stream

Filler

BeginSeqNum Message sequence number of first message in range to be resent

EndSeqNum Message sequence number of last message in range to be resent

6.3.1.5.1 Example of Retransmission Request

Assume the client application received the following packets from real time multicast channel 1:

Channel Packet

Sequence

Number

Message Message received Message Gap (Y/N)

1 101 Msg1

Msg2

Msg3

Msg1 (101)

Msg2 (102)

Msg3 (103)

N

1 104 Msg4

Msg5

Msg6

Msg4 (104)

Msg5 (105)

Msg6 (106)

N

1 109 Msg7

Msg8

Msg7 (109)

Msg8 (110)

Y

The client application should send the following Retransmission Request Message to recover missing

messages (Seq #107-108):

Retransmission Request Message

MsgSize 16

MsgType 201

ChannelID 1

Filler

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 22

Retransmission Request Message

BeginSeqNum 107

EndSeqNum 108

6.3.1.6 RTS Response

After the client sends a Retransmission Request, the RTS will respond with a Retransmission

Response message. The most important field in the response message is the RetransStatus. Below

are the possible values and what they indicate:

Retransmission Response

Status
Meaning

0 Request accepted

1 Unknown/Unauthorised Channel ID

2 Messages not available

100 Exceeds maximum sequence range

101 Exceeds maximum requests in a day

It is very important to stop sending retransmission requests for the current day after being rejected with

reason 101. Clients may contact the LME for assistance.

6.3.1.7 RTS Message

Upon receiving a Retransmission Response with Status '0', the RTS will start sending packets

containing the requested messages. The sequence number of first requested message will be used as

sequence number in packet header.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 23

6.3.1.8 Processing of RTS retransmission data

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 24

(Assuming a client is authorised to that channel ID and has not reached the maximum request limit.)

Please refer to APPENDIX B – Pseudo code for processing retransmission data for an example on

handling data from LMEsource Retransmission server.

6.3.2 Refresh Service

The LMEsource feed provides a refresh service (RFS), which allows clients to start intraday or recover

from significant packet loss. The refresh service is available per channel.

The RFS periodically provides a full snapshot of the market. Not all the messages available from the

live feed can be recovered from the refresh service. However, all the message types, necessary for

reconstructing an up-to-date image of the market, are available from the refresh service.

The refresh packets are disseminated via dedicated multicast streams.

Similar to real time data transmission, the refresh data is published over two redundant lines, A and B.

Clients can apply the Line Arbitration mechanism described in section 6.2.2, except that there is no

retransmission.

It is advisable that clients utilise the refresh service under the following situations:

1. Intraday start

2. Large message gap

3. Delay in the RTS retransmission

4. RTS retransmission failure

6.3.2.1 RFS Snapshot

Please refer to the Refresh Service in the LMEsource Client Interface Specification for the coverage of

snapshot data.

6.3.2.2 Processing a Refresh

Processing the refresh while coping with the live feed may be a challenging piece of functionality in the

feed handler. There are several things to think about in order to process the refresh properly. The 4

main areas, in which problems may perhaps arise, are:

1. Connectivity

2. Synchronisation

3. Determine a full refresh snapshot

4. Sequencing of events

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 25

6.3.2.2.1 Connectivity

There are 2 data streams that need to be handled during the refresh:

1. Live feed multicast

2. Refresh feed multicast

6.3.2.2.2 Synchronization

1. Subscribe to the real time multicast channel and cache received messages.

2. Subscribe to the corresponding refresh multicast channel. Once subscribed, if messages are

received instantaneously, clients should discard all messages till the arrival of a Refresh

Complete message. The Refresh Complete message marks the beginning of the next refresh

cycle as well as the end of the previous refresh cycle.

3. Wait for the next wave of snapshot data. Process all messages until the next Refresh Complete

message is received.

4. Store the LastSeqNum sequence number provided in the above message.

5. Unsubscribe from the refresh multicast channel.

6. Discard the cached real time messages with sequence number less than or equal to

LastSeqNum found in the Refresh Complete message, except for Sequence Reset messages

which need to be processed. Please refer to section 8.4 for details.

7. Process the remaining cached real-time messages and resume normal processing.

6.3.2.2.3 Determine a full refresh snapshot

When subscribing to LMEsource refresh multicast channels, clients should handle the following

situations to recover a full image of the market:

1. The first message received is a Heartbeat

If there is no message transmission (channel idle) in a refresh multicast channel before the next

fresh cycle begins, LMEsource sends Heartbeat messages at a regular time interval in the interim

period. Clients wait for the full refresh snapshot starting with a message other than Heartbeat and

ending with the arrival of Refresh Complete message.

2. The first message received is a Refresh Complete message

Clients ignore the first Refresh Complete message and the subsequent Heartbeat message(s) in

a refresh multicast channel. The next refresh snapshot starts with a message other than Heartbeat

and ends with the arrival of the second Refresh Complete message.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 26

3. The first message received is neither Heartbeat nor Refresh Complete message

Clients are in the middle of a refresh cycle and cannot receive a full refresh snapshot from this

cycle. They should NOT process any messages at the moment. Simply skip message(s) until a

Refresh Complete message is received. Usually, LMEsource sends a refresh snapshot at regular

intervals. A Heartbeat may be disseminated in between two rounds of refresh snapshots, or there

can be two rounds of refresh snapshots without Heartbeat in between if the time gap is 2 seconds

or less. With or without Heartbeats, Clients can obtain a full market snapshot in the next refresh

interval after the first Refresh Complete message received.

Note

When Clients listen to the refresh channels for the latest images, they may receive a Refresh Complete

message with “0” LastSeqNum in some channels. This indicates that no messages have been

published in the corresponding real-time channels. That normally happens before market opens or may

be due to no market activity.

In the case of LastSeqNum being “0”, if the Clients receive only Heartbeat messages with SeqNum =

“1” in real-time channels and they detect no packet loss by Line Arbitration or retransmission (i.e. the

RTS returns “2 – Message not available”), LMEsource is running normally and the Clients have not

missed any packets in the real-time channel.

6.3.2.2.4 Sequencing of events

It is important for clients to know which multicast channels hosts reference data for what other

channels. Clients should not process any data (except for the reference data) until the full reference

data is processed.

This implies the order of requesting refresh that clients should obey.

If the feed handler is started intraday, clients should first go to the refresh of channels that serve

reference data. Only after the refresh of the reference data is received, should clients ask for the

refresh of trades, order books, etc.

Note

There is no TCP retransmission for refresh. Clients must monitor for packet loss on the refresh

channels and wait for the next snapshot if loss is detected.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 27

6.3.2.3 Exception Handling

6.3.2.3.1 Arrival of Sequence Reset message in real-time channel in the middle of a

Refresh cycle

The following steps are suggestions for handling of a rare situation where Sequence Reset messages

are received whilst processing Refresh messages:

1. Discard the Refresh messages received during the current Refresh cycle

2. Reset the next expected sequence number to the value of NewSeqNo field in Sequence Reset

message

3. Clear all cached data for all instruments

4. Subscribe to the corresponding Refresh channels of all subscribed real time multicast channels

to receive the current state of the market, following the same steps in this section for handling

messages from Refresh channels

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 28

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 29

Please refer to APPENDIX C – Pseudo code for processing a refresh snapshot packet for an example

on handling data from the LMEsource RFS.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 30

7 Race Conditions

The real-time order/trade data and reference data are disseminated via separate channels, so users

need to be aware of the possibility of a race condition.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 31

8 Exception Handling and Special Trading Condition

The following sections cover some common exceptions handling procedures that clients must be

capable of when subscribing to LMEsource:

In order to facilitate clients’ verification of their exception handling ability, some of the exceptional

scenarios are included in the Readiness Test.

Emergency drills are also held in a production-like environment on a regular basis for clients to test

their systems and practise their operations on the handling of other exceptional scenarios such as

backup site failover.

Please refer to the following sub-sections for the availability of test/drill session for each of the

exceptional scenarios. LME will issue a client notice to announce the schedule and coverage of a

regular rehearsal in advance.

8.1 Late Connection / Start-up Refresh

When client starts late, all reference data should be recovered before the current image for all

instruments across all channels.

Please refer to section 6.3.2.2 for recovery procedures.

Note

 Some channels may host reference data for other channels.

 Channels which depend on other channels for reference data cannot be processed before full

reference data has been received

 Clients must define relationships between channels

Clients can test late connection in the Readiness Test environment as they wish.

8.2 Intra-day Refresh

For each real time multicast channel there exists a corresponding refresh multicast channel on which

snapshots of the market state are sent at regular intervals throughout the business day.

When clients experienced an unrecoverable packet loss on a certain channel during the day, a

snapshot is only needed for that channel.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 32

8.2.1 Sequencing of events

1. Clear all cached data on that channel.

1.2. Cache real time messages in the multicast channel that previously experienced packet loss.

2.3. Listen to the corresponding refresh multicast channel and wait for the next snapshot (refer to

section 6.3.2.2).

3.4. Process all refresh messages until the arrival of a Refresh Complete message.

4.5. Store the LastSeqNum sequence number provided in the Refresh Complete message.

5.6. Disconnect from the refresh multicast channel.

6.7. Process the cached real time messages with sequence numbers greater than the

LastSeqNum.

The client will now maintain the current market image.

8.3 Client Application Restarts

The process for managing client application restarts is similar to that for “Late Connection / Intraday

Refresh” as described above.

8.4 Sequence Reset Message

8.4.1 Sequence Reset Message from real time channels

8.4.1.1 Sequencing of events

1. Receipt of a “Sequence Reset Message” from any real time multicast channel.

2. Reset the next expected sequence number to 1 which should be the same as the value of

NewSeqNo field in Sequence Reset message.

3. Clear all cached data for all instruments on that channel.

4. Subscribe to the corresponding refresh channels of all subscribed real time multicast channels

to receive the current state of the market (refer to section 6.3.2.2).

5. Resume to process real time messages

8.4.1.2 Packet loss detection when processing Sequence Reset Message

After a Sequence Reset, the first UDP packet should have a sequence number of 1. If however this

packet is lost and clients start receiving packets with a sequence number of 2 and onwards clients can

try to recover the lost packet from the redundant line. If the lost packet is unrecoverable, clients should

start buffering the live feed and send a retransmission request immediately.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 33

Once clients have finished processing the retransmitted messages from RTS, clients can maintain the

latest market image by handling the buffered data and then the live feed.

8.5 LMEsource Restarts before Market Open

In this scenario LMEsource performs a start-of-day twice due to errors encountered during first start-

of-day. The second start-of-day should trigger a Sequence Reset in all channels. Clients should discard

all reference data received in the first start-of-day and process the second start-of-day.

8.6 LMEsource Restarts after Market Open (Intraday Restart)

When LMEsource fails during trading hours, besides failing over to the backup site to resume service,

LMEsource may be recovered by Intraday Restart where LMEsource will be shut down and then

restarted. When LMEsource is shut down, retransmission services in both primary and backup sites

will be disconnected and no multicast traffic, including heartbeats, will appear on any real-time or

refresh channels.

LME will inform clients if an Intraday Restart needs to take place. The intraday restart will be announced

by a news message on LMEselect, email or on the LME.com website.

LME will notify clients when LMEsource is subsequently restarted. Upon receipt of the notification from

LME all clients should clear all their internal caches and reconnect to LMEsource afresh in the same

way as if their systems start up late and connect to LMEsource only after the market has opened. In

this situation, clients should not rely on the presence of Sequence Reset messages in any channels

upon their reconnection and they need to go through the refresh service (see section 6.3.2.2) to

establish the latest market snapshot.

The duration between LMEsource’s shutdown and the subsequent restart could be a timespan of an

hour and clients need to observe announcements made by LME.

8.7 LMEsource Component Failover

Electronic Channels

Component failover on Electronic channels would only impact one of LMEsource’s lines. If no live data

can be received on one line (line A) there is no impact to clients as LMEsource would continue

publishing data via the alternative line (line B). Clients can reapply line arbitration as usual when

LMEsource resumes the service and publishes the data from line A. Data published during the

interruption would not be resent after line A has resumed the service.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 34

Non-Electronic Channels

Component failover could cause non-electronic channels to experience an outage for a few seconds.

When the service resumes recovery messages will be published to update clients with the latest market

image. Duplicated messages resent will carry the same data content as the original but with new packet

time and sequence number.

Refresh Channels

If a “Sequence Reset Message” is received from refresh channels, the client should clear the cached

refresh messages and reset the sequence number of corresponding channel. (Refer to section 6.3.2.2

for handling sequence reset message from Refresh channels).

8.78.8 Site Failover

In the event of a severe technical problem that requires LMEsource to failover to the backup site to

allow for resumption of the market data service, a Disaster Recovery Signal (105) (referred to as “DR

Signal” hereafter) message will indicate the status of LMEsource on the backup site for client actions.

A dedicated multicast channel is assigned to transmit DR Signal. During normal days, LMEsource

starts up on the primary site and the DR Signal message only carries heartbeats. In case of the backup

site taking over the primary site, the DR Signal transmitted from the dedicated channel will carry a DR

status instead of heartbeats. At that point, the multicast addresses of real-time and refresh data will

remain the same whereas clients should switch to the backup IP addresses to connect to the backup

RTS servers for Retransmission Service.

When LMEsource starts the failover to the backup site, DR Signal messages will be sent out with DR

Status “1” (DR in progress) until the site failover process is completed whereupon the DR Status in the

DR Signal message will be changed to “2” (DR completed). At this point, LMEsource is considered

operating normally on the backup site and the latest market snapshots can be obtained from the

Refresh channels. LMEsource will continue transmitting the DR Signal with DR Status “2” until the end

of business day.

Clients are advised to clear all LMEsource data previously cached when DR Status “1” is detected in

the DR Signal and prepare to execute their failover procedure. When DR Status “2” (DR completed)

appears, clients could rebuild the market image based on the refresh service similar to the case when

their feed handler systems are brought up intraday (see section 6.3.2 on how to rebuild the market

image from the refresh service). Clients are advised to build an automatic recovery mechanism so as

to enable timely recovery on their side.

The following describes the LMEsource site failover behaviour based on which clients can automate

their systems to resume market data service against the LMEsource backup site:

 Multicast data including heartbeats from all real-time & refresh channels is unavailable.

 Clients are unable to connect and log on to the RTS or, in the case of an already established

RTS session, the TCP connection is disconnected or appears stale with no response from the

RTS servers.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 35

 LMEsource starts broadcasting DR Signal with DR Status “1” (DR in progress) repeatedly

during the execution of recovery procedure.

 During the DR Status “1” (DR in progress), clients should clear all previously cached market

data and prepare for any site failover operation if necessary.

 LMEsource starts broadcasting the DR Status “2” (DR completed) status repeatedly once

LMEsource has finished the recovery procedure and is functioning normally. Refresh and real

time services are ready for clients to rebuild the latest market image.

 After successful site failover, clients should follow the Interface Specifications and this

Developer Guide to get the latest market snapshot from the refresh service before resuming

receiving real-time data.

 In any event, client systems must be able to detect the unavailability of the primary site and

the full readiness of the backup site, i.e. when DR Status “2” is received. For example, client

systems which do not follow the recommended logic above but require “shutdown then restart”

as part of their recovery procedure may not rely on DR Status “1” (DR in progress) for clearing

all previously cached market data as this might have been done before the systems have

reconnected to the LMEsource on the backup site. Nonetheless, the systems should still wait

for DR Status “2” (DR completed) to start recovering through the refresh service as in the case

of late client system start-up when LMEsource is already disseminating data.

 The duration from the loss of all multicast data (i.e., primary site shutdown) until the

dissemination of the DR Signal message with the DR Status “2” (DR completed) (i.e., service

resumption in the backup site) could be as short as 5 minutes. Clients should use this 5-minute

failover time as a design objective in their automated LMEsource site failover solution.

Since the site failover processes of clients are likely to be slightly different if carried out in the production

environment (for example, connection via different IP addresses), this scenario is also among the

possible scenarios to be covered in a regular emergency drill.

8.88.9 Special Trading Condition

The clients’ systems should have the flexibility to handle the variations of LMEsource data transmission

patterns due to the extraordinary trading conditions which may necessitate a late start to LMEselect

trading.

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 36

9 APPENDIX A – Pseudo Code of Line Arbitration

This example shows how clients can process a packet received from LMEsource. This function handles

data received from Line A or Line B multicast channels.

void processPacket(Packet packetBuffer)

{

 if (packetBuffer.getSeqNum() > expectedSeqNum) {

 //Gap detected, recover lost messages

 //Spool Packet in memory and wait for a short period

 //Gap may be filled from the next few incoming packets,

 //either from same line or alternative line

 spoolMessages(packetBuffer);

 }

 else if (packetBuffer.getSeqNum() + packetBuffer.getMsgCount() < expectedSeqNum) {

 //Duplicate packet, ignore

 }

 else if (packetBuffer.containsSeqNum(expectedSeqNum)) {

 //Process the packet if it contains a message

 //with sequence number = expectedSeqNum

 int msgProcessCount = 0;

 for (int i=0; i < packetBuffer.getMsgCount(); i++) {

 if (packet.getSeqNum() + msgProcessCount == expectedSeqNum) {

 extractMessage(message, packetBuffer, msgProcessCount);

 processMessage(message);

 expectedSeqNum++;

 }

 else {

//Duplicate message, ignore

 }

msgProcessCount++;

 }

 }

}

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 37

This example shows how a timer function processes the spooled messages at a regular time interval.

void checkMessageSpoolTimer()

{

 MessageSpool::iterator i = mMessageSpool.begin();

 // iterate through the message spool

 while (i != mMessageSpool.end())

 {

 Message message = i->second;

 // If the current packet sequence number is larger than expected, there's a gap

 if (message.getSeqNum() > mNextSeqNum)

 {

 //No retrans request sent for this message before

 if (! message.getRetransRequested()) {

 sendRetransRequest(mNextSeqNum,

 message.getSeqNum() - 1);

 return;

 }

 //time limit hasn't been reached, so it's still not an

 // unrecoverable gap. Return and wait..

 if (message.getTimeLimit() < poolTimeLimit) {

 return;

 } else {

 //The RetransRequest failed or took too long and the gap wasn't

 //filled by the other line - The messages have been permanently

 //missed. Recover the lost data from Refresh Server (RFS)

 recoverFromRefresh();

 }

 }

 if (message.containsSeqNum(mNextSeqNum))

 {

 // The packet contains the next expected sequence number, so process it

 processPacket (message);

 }

 }

}

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 38

10 APPENDIX B – Pseudo code for processing

retransmission data

This example shows how clients can process incoming data from the LMEsource Retransmission

server. It handles Heartbeat, RTS Logon Response, RetransRequest Response and Retrans data.

void read()

{

 readBuffer(mRtsBuffer);

 while (true)

 {

 // Get packet information at mRtsBuffer

 PacketHeader* packet = (PacketHeader*) mRtsBuffer;

 // If the entire packet is in the buffer, process it

 if (isEntirePacket(mRtsBuffer))

 {

 // If Heartbeat (i.e. packet with 0 MsgCount)

 if (packet->mMsgCount == 0)

 {

 sendRtsHeartbeat(mRtsBufPos, packet->mPktSize);

 }

 else

 {

 // Determine the kind of message(s) in the packet

 uint16_t msgType = packet.getMsgType();

 switch (msgType)

 {

 case LOGON_RESPONSE_TYPE:

 {

 LogonResponse *logonResponse

 = (LogonResponse *)(mRtsBufPos + sizeof(PacketHeader));

 processLogonResponse(logonResponse);

 break;

 }

 case RETRANS_RESPONSE_TYPE:

 {

 RetransResponse* resp = (RetransResponse*) (mRtsBufPos + sizeof(PacketHeader));

 processRetransResponse(resp);

 break;

 }

 default:

 processPacket(packet);

 }

 }

 }

 // Wait for the rest of the data to come from the socket

 else

 {

 break;

 }

 }

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 39

 default:

 processPacket(packet);

 }

 }

 }

 // Wait for the rest of the data to come from the socket

 else

 {

 break;

 }

 }

}

LMEsource v4 Developer Guide Version 1.1

Classification: Public

Page 40

11 APPENDIX C – Pseudo code for processing a refresh

snapshot packet

This example shows how clients can process refresh snapshot data from the LMEsource RFS server

and merge with real-time messages.

void processRefreshPacket(Packet packetBuffer) {

static int expectedSeqNum = 0;

 //First Message is Heartbeat or Refresh Complete Message

 if(! isStartOfRefresh(packetBuff) {

 return;

 }

 if (packetBuffer.getSeqNum() > expectedSeqNum) {

 //Gap detected

 clearSpoolMessage();

 return;

 }

 else if (packetBuffer.getSeqNum() + packetBuffer.getMsgCount() < expectedSeqNum) {

 //Duplicate packet, ignore

 return;

 }

 else if (packetBuffer.containsSeqNum(expectedSeqNum)) {

 spoolMessages(PacketBuff, expectedSeqNum);

 }

 if (isRefreshComplete(packetBuffer)) {

 List refreshMessageList = getRefreshSpoolMessage();

 processMessages(refreshMessageList);

 //Get spooled realtime message with seq num >= expectedSeqNum;

 List realtimeMessageList = getRealtimeSpoolMessage(expectedSeqNum);

 processMessages(realtimeMessageList);

 }

}

	1 Document Control
	1.1 Change History
	1.2 Associated Documents

	2 Introduction
	2.1 Acronyms used in this document
	2.2 Basic Client Application Layout

	3 Data Structure
	3.1 Packet Header
	3.2 Heartbeats
	3.3 Message Header
	3.4 Message Formats

	4 Endian
	5 Field Attributes
	5.1 Null Values
	5.2 Currency Values
	5.3 Fragmented Messages

	6 Message Processing
	6.1 Start of Day
	6.2 Normal Transaction
	6.2.1 Receive Multicast
	6.2.2 Line Arbitration
	6.2.2.1 Possible approaches for handling a message gap

	6.2.3 Process Control Message (Heartbeats)
	6.2.4 Process Disaster Recovery Signal Message (105)

	6.3 Recovery
	6.3.1 Retransmission Service
	6.3.1.1 Secondary Retransmission Service
	6.3.1.2 RTS Logon
	6.3.1.3 RTS Logon Response
	6.3.1.4 RTS Heartbeats
	6.3.1.5 RTS Request
	6.3.1.5.1 Example of Retransmission Request

	6.3.1.6 RTS Response
	6.3.1.7 RTS Message
	6.3.1.8 Processing of RTS retransmission data

	6.3.2 Refresh Service
	6.3.2.1 RFS Snapshot
	6.3.2.2 Processing a Refresh
	6.3.2.2.1 Connectivity
	6.3.2.2.2 Synchronization
	6.3.2.2.3 Determine a full refresh snapshot
	6.3.2.2.4 Sequencing of events

	6.3.2.3 Exception Handling
	6.3.2.3.1 Arrival of Sequence Reset message in real-time channel in the middle of a Refresh cycle

	7 Race Conditions
	8 Exception Handling and Special Trading Condition
	8.1 Late Connection / Start-up Refresh
	8.2 Intra-day Refresh
	8.2.1 Sequencing of events

	8.3 Client Application Restarts
	8.4 Sequence Reset Message
	8.4.1 Sequence Reset Message from real time channels
	8.4.1.1 Sequencing of events
	8.4.1.2 Packet loss detection when processing Sequence Reset Message

	8.5 LMEsource Restarts before Market Open
	8.6 LMEsource Restarts after Market Open (Intraday Restart)
	8.7 LMEsource Component Failover
	8.8 Site Failover
	8.9 Special Trading Condition

	9 APPENDIX A – Pseudo Code of Line Arbitration
	10 APPENDIX B – Pseudo code for processing retransmission data
	11 APPENDIX C – Pseudo code for processing a refresh snapshot packet

